SOS3003 Applied data analysis for social science Lecture note 07-2009

Erling Berge Department of sociology and political science NTNU

Fall 2009

© Erling Berge 2009

Literature

 Logistic regression I Hamilton Ch 7 p217-234

Fall 2009

© Erling Berge 2009

2

LOGIT REGRESSION

- Should be used if the dependent variable (Y) is a nominal scale
- Here it is assumed that Y has the values 0 or 1
- The model of the conditional probability of Y, E[Y | X], is based on the logistic function
 (E[Y | X] is read "the expected value of Y given
 the value of X")
- But

Why cannot $E[Y \mid X]$ be a linear function also in this case?

Fall 2009

© Erling Berge 2009

The linear probability model: LPM

- The linear probability model (LPM) of Y_i when Y_i can take only two values (0, 1) assumes that we can interpret E[Y_i | X] as a probability
- $E[Y_i | X] = b_0 + \Sigma_j b_j x_{ji} = Pr[Y_i = 1]$
- This leads to severe problems:

Fall 2009

© Erling Berge 2009

Are the assumptions of a linear regression model satisfied for the LPM?

- One assumptions of the LPM is that the residual, e_i satisfies the requirements of OLS
- The the residual must be either
 - $-e_{i} = 1 (b_{0} + \sum_{j} b_{j} x_{ji})$ or
 - $-e_{i} = 0 (b_{0} + \Sigma_{j} b_{j} x_{ji})$
- This means that there is heteroscedasticity (the residual varies with the size of the values on the x-variables)
- There are estimation methods that can get around this problem (such as 2-stage weighted least squares method)
- One example of LPM:

Fall 2009

© Erling Berge 2009

5

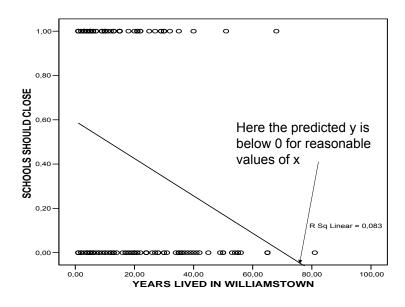
OLS regression of a binary dependent variable on the independent variable "years lived in town"

ANOVA tabell	Sum of Squares	df	Mean Square	F	Sig.
Regression	3,111	1	3,111	13,648	,000(a)
Residual	34,418	151	,228		
Total	37,529	152			
Dependent Variable: SCHOOLS SHOULD CLOSE			Std.		
	SE	В	Error	t	Sig.
	SE	B ,594	Error ,059	t 10,147	Sig. ,000

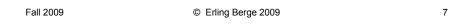
The regression looks OK in these tables

Fall 2009

© Erling Berge 2009



Scatter plot with line of regression. Figure 7.1 Hamilton



Conclusion: LPM model is wrong

- The example shows that for reasonable values of the x variable we can get values of the predicted y where
 - $E[Y_i | X] > 1 \text{ or } E[Y_i | X] < 0,$
- For this there is no remedy
- LPM is for substantial reasons a wrong model
- We need a model where we always will have $0 \le E[Y_i \mid X] \le 1$
- The logistic function can provide such a model

Fall 2009

© Erling Berge 2009

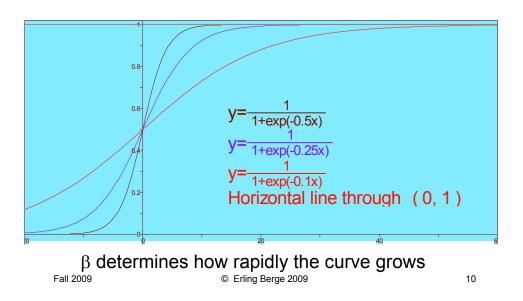
The logistic function

```
The general logistic function is written
            Y_i = \alpha / (1 + \gamma^* \exp[-\beta X_i]) + \varepsilon_i
\alpha > 0 provides an upper limit for Y
this means that 0 < Y < \alpha
\gamma determines the horizontal point for rapid growth
If we determines that \alpha = 1 and \gamma = 1
One will always find that
            0 < 1/(1 + \exp[-\beta X_i]) < 1
The logistic function will for all values
of x lie between 0 and 1
 Fall 2009
```

© Erling Berge 2009

9

Logistic curves for different β



MODEL (1)

Definitions:

- The probability that person no i shall have the value 1 on the variable Y will be written Pr(Y_i =1). Then Pr(Y_i ≠ 1) = 1 - Pr(Y_i=1)
- The odds that person no i shall have the value 1 on the variable Y, here called O_i, is the ratio between two probabilities

$$O_i(y_i = 1) = \frac{\Pr(y_i = 1)}{1 - \Pr(y_i = 1)} = \frac{p_i}{1 - p_i}$$

Fall 2009

© Erling Berge 2009

11

12

MODEL (2)

Definitions:

- The LOGIT, L_i, is the natural logarithm of the odds, O_i, for person no i: L_i = ln(O_i)
- The model assumes that L_i is a linear function of the explanatory variables x_i,
- i.e.:

•
$$L_i = \beta_0 + \Sigma_j \beta_j x_{ji}$$
, where j=1,..,K-1, and i=1,..,n

© Erling Berge 2009

Fall 2009

Ref.: http://www.svt.ntnu.no/iss/Erling.Berge/

MODEL (3)

 Let X = (the collection of all x_j), then the probability of Y_i = 1 for person no i

$$\Pr(y_{i} = 1) = E[y_{i} | X] = \frac{1}{1 + \exp(-L_{i})} = \frac{\exp(L_{i})}{1 + \exp(L_{i})}$$

where $L_{i} = \beta_{0} + \sum_{j=1}^{K-1} \beta_{j} X_{ji}$

The graph of this relationship is useful for the interpretation what a change in x means

Fall 2009

© Erling Berge 2009

13

MODEL (4)

In the model $Y_i = E[Y_i | X] + \varepsilon_i$ the error is either

• $\varepsilon_i = 1 - E[Y_i | X]$ with probability $E[Y_i | X]$ (since $Pr(Y_i = 1) = E[Y_i | X]$),

or the error is

- $\varepsilon_i = E[Y_i | X]$ with probability 1 $E[Y_i | X]$
- Meaning that the error has a distribution known as the binomial distribution with p_i = E[Y_i | X]

Fall 2009

© Erling Berge 2009

Estimation

- The method used to estimate the parameters in the model is Maximum Likelihood
- The ML-method gives us the parameters that maximize the Likelihood of finding just the observations we have got
- This likelihood we call ${\cal L}$
- The criterion for choosing regression parameters is that the likelihood becomes as large as possible

Fall 2009

© Erling Berge 2009

15

Maximum Likelihood (1)

 The Likelihood equals the product of the probability of each observation.
 For a dichotomous variable where Pr(Y_i = 1)=P_i this can be written

$$\mathbf{L} = \prod_{i=1}^{n} \left\{ P_{i}^{Y_{i}} \left(1 - P_{i} \right)^{(1-Y_{i})} \right\}$$

Fall 2009

© Erling Berge 2009

Maximum Likelihood (2)

- It is easier to maximize the likelihood $\ensuremath{\mathcal{L}}$

if one uses the natural logarithm of $\boldsymbol{\mathcal{L}}$:

$$\ln(L) = \sum_{i=1}^{n} \{ y_i \ln P_i + (1 - y_i) \ln(1 - P_i) \}$$

- The natural logarithm of *L* is called the LogLikelihood, It may be called *LL*.
- \mathcal{LL} has a central role in logistic regression.

Fall 2009

© Erling Berge 2009

17

Logistic model instead of LPM

	-2 Log Likelihood		Coefficients				
Iteration			Con	stant	l	_ived in	n town
Step 0	209	,212		-,275			0
1	195	,684		,376			-,034
2	195	,269		,455			-,041
3	195	,267		,460			-,041
4	195	,267		,460			-,041
Dependent:							
Schools shoul	d close	В	S.E.	Wald	df	Sig.	Exp(B)
Lived in town	ed in town -		,012	11,399	1	,001	,960
Constant		,460	,263	3,069	1	,080,	1,584

Fall 2009

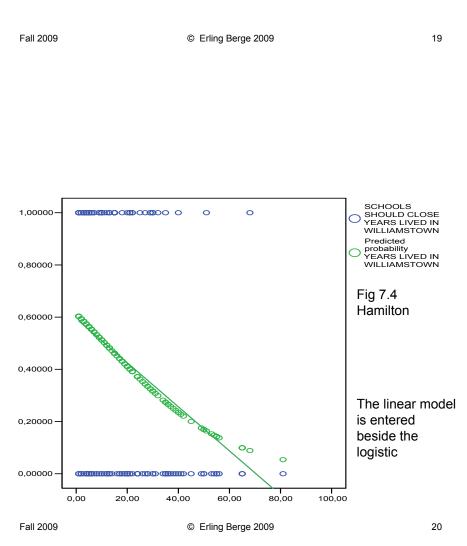
© Erling Berge 2009

Footnotes to the table

• Step 0: Point of departure is a model with a constant and no variables

Iterative estimation

- Estimation ends at iteration no 4 since the parameter estimates changed less than 0.001
- The Wald statistic that SPSS provides equals the square of the "t" that Hamilton (and STATA) provides (Wald = t²)



TESTING

Two tests are useful

- (1) The Likelihood ratio test
 - This can be used analogous to the Ftest
- (2) Wald test
 - The square root of this can be used analogous to the t-test

Fall 2009

© Erling Berge 2009

21

Interpretation (1)

- The difference between the linear model and the logistic is large in the neighbourhood of 0 and 1
- LPM is easy to interpret: $Y_i = \beta_0$ when $x_{1i}=0$, and when x_{1i} increases with one unit Y_i increases with β_1 units
- The logistic model is more difficult to interpret. It is non-linear both in relation to the odds and the probability

Fall 2009

© Erling Berge 2009

ODDS and ODDS RATIOS

 The Logit, L_i, (L_i= β₀ + Σ_i β_j x_{ji}) is defined as the natural logarithm of the odds

This means that

• odds = $O_i(Y_i=1) = \exp(L_i) = e^{L_i}$

and

- Odds ratio= O_i (Y_i=1| L_i') / O_i (Y_i=1| L_i)
 - where L' and L have different values on only one variable \boldsymbol{x}_{j}

Fall 2009

© Erling Berge 2009

Interpretation (2)

- When all x equals 0 then L_i = β₀ This means that the odds for y_i = 1 in this case is exp{β₀}
- If all x-variables are kept fixed (they sum up to a constant) while x₁ increases with 1, the odds for y_i = 1 will be multiplied by exp{β₁}
- This means that it will change with 100(exp{β₁} – 1) %
- The probability Pr{y_i = 1} will change with a factor affect by all elements in the logit

Fall 2009

© Erling Berge 2009

24

Logistic regression: assumptions

- · The model is correctly specified
 - The logit is linear in its parameteres
 - All relevant variables is included
 - No irrelevant variables are included
- x-variables are measured without error
- · Observations are independent
- No perfect multicollinearity
- No perfect discrimination
- Sufficiently large sample

Fall 2009

© Erling Berge 2009

Assumptions that cannot be tested

- Model specification
 - All relevant variables are included
- · x-variables are measured without error
- Observations are independent

Two will be tested automatically.

If the model can be estimated there is

- · No perfect multicollinearity and
- No perfect discrimination

Fall 2009

© Erling Berge 2009

26

LOGISTIC REGRESSION Statistical problems may be due to

- Too small a sample
- High degree of multicollinearity
 - Leading to large standard errors (imprecise estimates)
 - M is discovered and treated in the same way as in OLS regression
- High degree of **discrimination** (or separation)
 - Leading to large standard errors (imprecise estimates)
 - Will be discovered automatically by SPSS

Fall 2009

© Erling Berge 2009

27

Discrimination/ separation

- Problems with discrimination appear when we for a given x-value get almost perfect prediction of the y-value (nearly all with a given x-value have the same y-value)
- In SPSS it may produce the following message: Warnings
- There is possibly a quasi-complete separation in the data. Either the maximum likelihood estimates do not exist or some parameter estimates are infinite.
- The NOMREG procedure continues despite the above warning(s). Subsequent results shown are based on the last iteration. Validity of the model fit is uncertain.

Fall 2009

Discrimination in Hamilton table 7.5

- Odds for weaker requirements is 44/202 = 0,218 among women without small children
- Odds for weaker requirement is 0/79 = 0 among women with small children
- Odds rate is 0/0,218 = 0 hence exp{b_{woman}}=0
- This means that b_{woman} = minus infinity

|--|

=		Women without small children	Women with small children
	No	202	79
all	weaker require ments		
) =	Weaker require ments	44	0
© Erlin	OK Berge 2009		29

Logistic regression

 If the assumptions are satisfied logistic regression will provide normally distributed, unbiased and efficient (minimal variance) estimates of the parameters

Fall 2009

© Erling Berge 2009